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Question 1: Model hazard with additional information about the

agent’s behavior

(a) Write down expressions for the objective function and the constraints in the principal’s opti-

mization problem. One of the constraints should be an individual rationality constraint, which

we refer to as the “IR constraint”.

To induce the outcome e = 1, the principal should choose t1, t2, t3, and t4 so as to maximize

V = π1
(
S − t4

)
+ (1− π1) (S − t3) , (1)

subject to the following constraints:

π1t4 + (1− π1) t3 − ψ ≥ 0, (IR)

π1t4 + (1− π1) t3 − ψ ≥ (1− γ) [π0t4 + (1− π0) t3] + γ [π0t2 + (1− π0) t1] , (IC)

t1 ≥ 0, t2 ≥ 0, t3 ≥ 0, t4 ≥ 0. (LL)

The objective function V is the principal’s expected net surplus. The constraint IR is an individual

rationality (or participation) constraint; it ensures that the agent’s payoff is at least equal to the

outside option payoff (which is assumed to be zero). The constraint IC is an incentive compatibility

constraint, and it ensures that the agent indeed makes an effort (e = 1). The constraints LL are the

limited liability constraints that are specified in the question.

(b) Show that the IR constraint is implied by other constraints in the problem.

We can write:

π1t4 + (1− π1) t3 − ψ ≥ (1− γ) [π0t4 + (1− π0) t3] + γ [π0t2 + (1− π0) t1] ≥ 0,

where the first inequality holds due to IC and the second one holds due to LL and the assumptions

γ ∈ (0, 1) and π0 ∈ (0, 1). That is, the individual rationality constraint IR is implied by IC and

LL (in conjunction with the model assumptions about γ and π0).
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(c) What are the optimal choices of t1, t2, t3, and t4?

To solve for the optimal transfers, note the following things:

� By the argument in (b) above, we can ignore the IR constraint.

� The IC constraint must bind at the optimum. To prove this, suppose the opposite—the IC

constraint is lax at the optimum. If so, we must have either t3 > 0 or t4 > 0 (or both), and we

could lower that transfer level while still satisfying the IC constraint and without violating any

of the other constraints. Moreover, doing this would increase the objective, which contradicts

the assumption that we started at an optimum.

� At the optimum, we must have t1 = t2 = 0. This is true since the objective is independent of

those two transfer levels and the IC constraint is relaxed if we lower t1 and/or t2.

Thanks to the above insights, we problem consists of maximizing the objective in (1) w.r.t. t3 and

t4, subject to the binding IC constraint,

π1t4 + (1− π1) t3 − ψ = (1− γ) [π0t4 + (1− π0) t3]⇔ t4 =
ψ − [(1− π1)− (1− γ) (1− π0)] t3

π1 − (1− γ)π0
. (2)

Thus, the optimization problem is linear in the two choice variables. The optimum must therefore be

such that either t3 or t4 equals zero. If the right-hand side of the last equality in (2) is increasing in

t3 (i.e., if 1 − π1 ≤ (1 − γ) (1− π0)), then t4 = 0 is impossible and thus t3 = 0 at the optimum. The

implied value of t4 is obtained by setting t3 = 0 in (2)—this expression is stated in the analysis below.

For the remaining parameter configurations (i.e., for 1 − π1 > (1 − γ) (1− π0)), we can find the

optimum by computing the cost of inducing e = 1 if setting t3 = 0 and if setting t4 = 0, respectively,

and then compare.1 If t3 = 0, then (by (2)), we have

t4 =
ψ − [(1− π1)− (1− γ) (1− π0)] t3

π1 − (1− γ)π0
.

and thus the cost is

C4 =
π1ψ

π1 − (1− γ)π0
.

If t4 = 0, then (again by (2)), we have

t3 =
ψ

(1− π1)− (1− γ) (1− π0)
=

ψ

(1− π0) γ − (π1 − π0)
.

and thus the cost is

C3 =
(1− π1)ψ

(1− π0) γ − (π1 − π0)
.

1Another possibility would be to use a graphical approach.
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Comparing, we have

C4 < C3 ⇔ =
π1ψ

π1 − (1− γ)π0
<

(1− π1)ψ
(1− π0) γ − (π1 − π0)

⇔ −π1 < 1− γ,

which always holds. Thus, we see that the optimum is, for all parameter values, to set t3 = 0. Thus,

we have shown that the optimal transfer values are given by

t1 = 0, t2 = 0, t3 = 0, t4 =
ψ

π1 − (1− γ)π0
.

Question 2: Private information about both an exogenous effort cost

and an endogenous effort choice

(a) Explain in words what each one of the four last constraints (i.e., the ones with a label starting

with “FOA”) says and how we can understand the two variables edA and edB.

The agent in the model can choose any effort level in the unit interval. This means that if the

principal wants to induce the agent to choose some particular effort level e′, then she must ensure that

the agent does not prefer any other effort level in the unit interval. This gives rise to an infinite number

of incentive compatibility constraints. To reduce the number of such constraints in the optimization

problem, one can sometimes make use of the so-called first-order approach. The idea behind this

approach is to replace the large set of incentive compatibility constraints with a single one, namely

the first order condition associated with the agent’s effort choice problem. From inspection of the

problem above, we can conclude that first-order approach has been used. In particular, the four FOA-

constraints are first-order conditions associated with four relevant effort choice problems for the agent.

The constraints FOA-A and FOA-B define the agent’s optimal choice of e after having picked the

contract targeted at their particular type (A or B). These constraints are obtained by differentiating

the left-hand side of IR-A and IR-B, respectively, and then setting the resulting expression equal to

zero. The constraints FOA-A-d and FOA-B-d define the agent’s optimal choice of e after having picked

the other type’s contract. In other words, these constraints define the optimal deviation efforts edA and

edB, and these effort levels therefore appear in the right-hand sides of IC-A and IC-B, respectively.

(b) Show that the IR-A constraint is implied by model assumptions and other constraints in the

problem.

To show that IR-A holds, it suffices if we can show that the right-hand side of IC-A is non-negative.

This right-hand side clearly (by the model assumption that ψ(0, θ) = 0) equals zero if ed = 0. Moreover,
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we know that ed is chosen so as to maximize the value of right-hand side of IC-A, which means that

(since the value zero is obtainable) it cannot drop below zero.

(c) Denote the optimal value of eA by eSBA . Solve as much as you need of the problem in order to

argue that, if λA is small enough, then eSBA < eFB
A , where eFB

A is the A type’s first-best effort

level (i.e., eFB
A is implicitly defined by S − S = ψ1

(
eFB
A , θA

)
). Assume that all second-order

conditions associated with the problem are satisfied.

By differentiating the Lagrangian stated in the question and then setting the resulting expression

equal to zero, we obtain the following first-order condition:

∂L
∂eA

= ν
[
S − S − ψ1 (eA, θA)− eAψ11 (eA, θA)

]
+ λA [ψ1 (eA, θA) + eAψ11 (eA, θA)− ψ1 (eA, θA)]

− λBedBψ11 (eA, θA) + λB

[
−ψ1 (eA, θA) + ψ1

(
edB, θB

)] ∂edB
∂eA

= ν
[
S − S − ψ1 (eA, θA)− eAψ11 (eA, θA)

]
+ λAeAψ11 (eA, θA)− λBedBψ11 (eA, θA

= 0,

where the second equality makes use of the fact that ψ1 (eA, θA) = ψ1

(
edB, θB

)
(this equality

follows from combining FOA-A and FOA-B-d). The above first-order condition simplifies to

S − S = ψ1 (eA, θA) +
eAψ11 (eA, θA)

ν

[
(1− λA)eA + λBe

d
B

]
. (3)

If the last term in (3) is strictly positive, then we must have eSBA < eFB
A (because then the

“effective marginal cost” of effort exceeds ψ1 (eA, θA)). A sufficient condition for the last term

to be strictly positive is that λA < 1, as that ensures that the expression is square brackets

is strictly positive and we know that eA > 0, eAψ11 (eA, θA) > 0, and ν > 0. That is, if λA is

small enough (smaller than unity) at the optimum, then, for the A type, the second-best effort

is smaller than the first-best effort.
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